p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.23D4, C4.86(C4×D4), C42⋊10(C2×C4), C4⋊C4.316D4, (C2×D4).73D4, C4.4D4⋊12C4, C4.5(C4⋊D4), C42⋊6C4⋊22C2, C23.560(C2×D4), C2.5(D4.9D4), C22.99C22≀C2, C23.9(C22⋊C4), C23.38D4⋊22C2, (C22×C4).683C23, (C2×C42).284C22, C22.11C24.5C2, (C22×D4).19C22, (C22×Q8).15C22, C42⋊C2.20C22, C2.24(C23.23D4), (C2×M4(2)).180C22, C22.48(C22.D4), (C2×Q8)⋊8(C2×C4), (C2×D4).76(C2×C4), (C2×C4).55(C4○D4), (C2×C4).1004(C2×D4), (C2×C4.D4).8C2, (C2×C4.4D4).5C2, (C2×C4).185(C22×C4), C22.40(C2×C22⋊C4), SmallGroup(128,617)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.23D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=f2=d, ab=ba, ac=ca, ad=da, eae-1=faf-1=acd, bc=cb, bd=db, be=eb, bf=fb, ece-1=cd=dc, cf=fc, de=ed, df=fd, fef-1=be3 >
Subgroups: 404 in 180 conjugacy classes, 56 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C4.D4, Q8⋊C4, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C4.4D4, C4.4D4, C2×M4(2), C22×D4, C22×Q8, C42⋊6C4, C2×C4.D4, C23.38D4, C22.11C24, C2×C4.4D4, C24.23D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C23.23D4, D4.9D4, C24.23D4
(2 28)(3 7)(4 26)(6 32)(8 30)(9 18)(11 24)(12 16)(13 22)(15 20)(17 21)(25 29)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 31)(2 28)(3 25)(4 30)(5 27)(6 32)(7 29)(8 26)(9 22)(10 19)(11 24)(12 21)(13 18)(14 23)(15 20)(16 17)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 13 5 9)(2 21 6 17)(3 11 7 15)(4 19 8 23)(10 26 14 30)(12 32 16 28)(18 27 22 31)(20 25 24 29)
G:=sub<Sym(32)| (2,28)(3,7)(4,26)(6,32)(8,30)(9,18)(11,24)(12,16)(13,22)(15,20)(17,21)(25,29), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,13,5,9)(2,21,6,17)(3,11,7,15)(4,19,8,23)(10,26,14,30)(12,32,16,28)(18,27,22,31)(20,25,24,29)>;
G:=Group( (2,28)(3,7)(4,26)(6,32)(8,30)(9,18)(11,24)(12,16)(13,22)(15,20)(17,21)(25,29), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,13,5,9)(2,21,6,17)(3,11,7,15)(4,19,8,23)(10,26,14,30)(12,32,16,28)(18,27,22,31)(20,25,24,29) );
G=PermutationGroup([[(2,28),(3,7),(4,26),(6,32),(8,30),(9,18),(11,24),(12,16),(13,22),(15,20),(17,21),(25,29)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,31),(2,28),(3,25),(4,30),(5,27),(6,32),(7,29),(8,26),(9,22),(10,19),(11,24),(12,21),(13,18),(14,23),(15,20),(16,17)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,13,5,9),(2,21,6,17),(3,11,7,15),(4,19,8,23),(10,26,14,30),(12,32,16,28),(18,27,22,31),(20,25,24,29)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4P | 4Q | 4R | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D4 | C4○D4 | D4.9D4 |
kernel | C24.23D4 | C42⋊6C4 | C2×C4.D4 | C23.38D4 | C22.11C24 | C2×C4.4D4 | C4.4D4 | C4⋊C4 | C2×D4 | C24 | C2×C4 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 8 | 4 | 2 | 2 | 4 | 4 |
Matrix representation of C24.23D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 13 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 4 |
0 | 0 | 0 | 16 | 0 | 13 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
14 | 5 | 0 | 0 | 0 | 0 |
12 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 13 |
0 | 0 | 0 | 1 | 4 | 4 |
0 | 0 | 4 | 13 | 0 | 1 |
0 | 0 | 0 | 8 | 0 | 16 |
3 | 5 | 0 | 0 | 0 | 0 |
12 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 16 | 0 |
0 | 0 | 0 | 13 | 1 | 1 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 8 | 4 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,13,0,1,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,4,13,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[14,12,0,0,0,0,5,3,0,0,0,0,0,0,0,0,4,0,0,0,16,1,13,8,0,0,0,4,0,0,0,0,13,4,1,16],[3,12,0,0,0,0,5,14,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,16,1,13,8,0,0,0,1,0,4] >;
C24.23D4 in GAP, Magma, Sage, TeX
C_2^4._{23}D_4
% in TeX
G:=Group("C2^4.23D4");
// GroupNames label
G:=SmallGroup(128,617);
// by ID
G=gap.SmallGroup(128,617);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,1018,521,248,2804,1411,2028,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=f^2=d,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=f*a*f^-1=a*c*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=c*d=d*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*e^3>;
// generators/relations